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The theory of irreversible processes in plasmas is rigorously developed from the cluster formulation of the 
exact generalized Master equation. This equation is a time-dependent analog of the equilibrium virial ex
pansion, and the development of the theory of nonequilibrium plasmas is found to parallel that of the well-
known theory of equilibrium plasmas in a direct and simple way. A convergent kinetic equation for homo
geneous plasmas is then derived which includes the effects of close collisions as well as long-range collisions 
and is exact to first order in the density—in the asymptotic limit of long times. The distinguishing feature 
of this kinetic equation is that it converges for the Coulomb potential. No arbitrary cutoffs or screened po
tentials are required to "make" it converge. The divergence of previous kinetic equations is directly attrib
uted to the neglect of significant close collision terms (such equations are not exact to first order in the 
density). The method of derivation is quite general and the extension of the convergent kinetic equation to 
short times (non-Markoffian kinetic equation) as well as to general order in the density is indicated. 

I. INTRODUCTION 

TN recent years there have appeared several deriva-
-*• tions of kinetic equations for plasmas.1'2 These 
equations, as is well known, are characterized by a 
divergence at what corresponds to small impact parame
ters (close collisions)—even for homogeneous plasmas 
with a uniform positive background. The divergence of 
these kinetic equations is directly related to the inherent 
assumption that close collisions may, in some sense, be 
neglected. The fact that these equations do diverge 
refutes this assumption in so far as the relaxation or 
evolution of the momentum distribution function is con
cerned. Strictly speaking, these equations—although 
useful—are not correct to within the stated order of the 
relevant expansion parameter. 

The question then arises as to whether or not a con
vergent kinetic equation for a homogeneous plasma can 
be rigorously obtained when the equations of motion are 
described by classical mechanics. This question is of 
more than academic interest. It is pertinent, for ex
ample, to the dc conductivity of plasmas. 

An equation which accounts for close collisions ap
pears in an article by Hubbard.3 The method used in 
this work, however, requires further justification. More 
recently, a partial answer to the convergence question 
has been provided by the derivation of a kinetic equa
tion4 in which close binary collisions are explicitly ac
counted for via the BBGKY approach. We believe, 
however, that the convergence question has not been 
entirely answered there. This is because it was necessary 
to arbitrarily introduce a cutoff or screened potential to 
achieve formal convergence of the kinetic equation. 

It is our purpose to derive a convergent kinetic equa
tion without ever taking recourse to a cutoff or screened 
potential. We shall deal only with the Coulomb po-

1 C. M. Tchen, Phys. Rev. 114, 394 (1959); N. Rostoker and 
M. N. Rosenbluth, Phys. Fluids 3, 1 (1960). 

2 A. Lenard, Ann. Phys. (N. Y.) 3,390 (1960). R. Balescu, Phys. 
Fluids 3, 52 (1960). 

3 J. Hubbard, Proc. Roy. Soc. (London) A261, 371 (1961). 
4 D. E. Baldwin, Phys. Fluids 5, 1523 (1962). 
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tential. We shall also indicate how one can obtain a non-
Markoffian convergent kinetic equation which is valid 
for all time (such an equation is relevant to the transient 
evolution of the momentum distribution function as 
well as the frequency dependence of transport coeffi
cients). The generalization of this derivation to higher 
order in the density is clear. 

The derivation, which will be found in Sees. II to V, 
can be outlined as follows. It begins with the cluster 
formulation of the generalized master equation.5 This 
equation is an exact but simple expression for the 
evolution of the i^-particle momentum distribution func
tion <p(t) in terms of time-dependent irreducible 
cluster integrals ps(i). 

It is given by 

= / dy\ Z *(*-?)• 
dt Jo I—i df J 

These cluster integrals correspond to collisions between 
(s+1) particles and are a time-dependent analog of the 
Mayer irreducible clusters well known in equilibrium 
statistical mechanics. This master equation is to be 
viewed here as a time-dependent virial expansion for the 
evolution of the momentum distribution function in 
which £,(/) plays the role of the (s+l)th virial coeffi
cient. The attractive feature of this formulation is that 
it casts the time-dependent problem into a form which 
closely resembles an analogous equilibrium problem, 
We shall hence be able to make use of notions which 
are well known in equilibrium theory to guide us in our 
understanding of nonequilibrium theory* 

For example, the time-dependent cluster integral @8(y) 
diverges when the interaction potential is Coulombic— 
just as the equilibrium cluster integral does. [This, of 
course, is the essential feature of plasma theory, in the 
absence of magnetic fields, which distinguishes it from 
neutral gas theory—both equilibrium and nonequilib-

5 J. Weinstock, Phys. Rev. 132, 454 (1963). 
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rium.] To circumvent this difficulty we extract ring 
integrals of {s+1) particles from ft(y) just as is done in 
equilibrium theory. These ring integrals Rs(y) corre
spond to weak (long-range) (s+1)-particle collisions, 
and the remainder [.fis{y)—Rs{y)2 corresponds to 
strong (close) {s+1) -particle collisions. The time-de
pendent virial expansion for </>(t) may thus be divided 
into a weak (distant) collision part, 

00 

Y, Rs(y) = ring sum, 
8 = 1 

plus a strong interaction part, 

Z.&.(y)-R.(y)l, 

as follows 

dt 
= [ <*yj £2?." (y) 

+ T.[ps"(y)-Rs"mm-y). 
8=1 I 

The ring sum accounts for long-range collisions (shield
ing) and leads to the Lenard-Balescu, Fokker-Planck 
equation. The cluster remainder (3s(y)—Rs{y) leads to 
corrections to the Fokker-Planck equation which are 
due to close (s+1) -particle collisions and which are of 
the sth. order in the density. The correction for close 
(Coulombic) binary collisions exactly cancel out the 
divergence which appears in the Fokker-Planck equa
tion and leads to a convergent kinetic equation. 

We shall present the details of this calculation for a 
homogeneous plasma with a uniform neutralizing 
background. 

II. GENERALIZED MASTER EQUATION 

To begin the derivation of a convergent kinetic 
equation we consider the Hamiltonian of a system of N 
pair-interacting particles enclosed in a volume V: 

ff=E—+E^*i(R*0, 
k=i 2m k<i 

(i) 

where Yk and R& are the momentum and position of 
particle k, Rfcz=R&— Rz, and Vki(Rki) is the interaction 
potential between particles k and s. The evolution 
of the iV-particle distribution function ^ ( { R } ; {P} ; t) 
= F ( R i - • -RJV; Pi- • -Piv; t), is determined by Liouville's 
equation: 

dF/dt=-iLF, (2) 

where L is the Liouville operator defined by 

L~L0+ Y Lki 
k<i 

d 6Vkl / d 
iZm-Wjc + * E 

* dRk k<idRkl \d?k 

d 

ap 
(3) 

The generalized master equation is a closed equation 
for the evolution of the iV-particle momentum distribu
tion function <j>(t), where <j>{t) is defined by 

*(0 = 
• F " " / 

d{R}F({R);{F};t)^({P};l). (4) 

In Ref. 5 (hereafter referred to as I) we have derived a 
generalized master equation which is exact for all time 
in the limit of an infinite system {N, V—> oo y N/ V=con
stant) for distribution functions which are initially 
independent of positions. This equation is given by 

d y l z U(/-y), (5) 
dt Jo l« = 1 dy2 

where 

p8(y)=lim L Psiiiir-ia+iiy) (6) 
#->«> l<h<-> <i8+i<N 

and ft(v * -i8+i',y) is a time-dependent {s+1)-particle 
collision operator the explicit definition of which will be 
found in I. [Briefly, ft(ir • -is+i; y) involves the dy
namics of the {s+1) particles ii, i2, m—is+i. I t is a 
propagator (Green function) which corresponds to a 
collision between particles i v - i8+i and is a time-
dependent analog of the equilibrium irreducible cluster 
integral of {s+1) particles. For example, the time-
dependent, two-particle irreducible cluster integral 
ft (12;*) is defined in I by 

ft(12; / ) ^ 7 - i fd^12[_e^L^L^-eitL^(t>. 0) 

The integrand [_em
L<*Lu) — e

itL®] of this cluster integral 
is nonzero for only that region of R12 space which leads 
to a collision between particles 1 and 2 within time /. 
The asymptotic two-particle operator 

l im(d/30f t (12;0 
t—>00 

is just the well-known Boltzmann collision integral J 

III. KINETIC EQUATION 

The equation for the single-particle distribution func
tion 0i (Pi), 

0 i (P i )=0! (P i ; t)= fd¥2dPr • -dPMO > (8) 

is referred to as a kinetic equation and is basic to the 
study of transport phenomena in fluids. Such an equa
tion may be readily obtained from the master equation 
by integrating it over all momenta except Pi—providing 
<j){t) satisfies the product condition. We thus integrate 
(5) over all momenta except Px to obtain an equation 
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Wx(Pi ) : 

^i(Pi) r rl f - d%(y)} 
= d?r--d?N dy\Z \4>(t-y). (9) 

dt J Jo I - i df J 

There only remains to reduce the right side of (9) to a 
function of <£i. This is a simple task if fl8(y) converges— 
as it does for short-range forces.6 The situation is more 
complicated for Coulomb interactions since then ($8(y) 
does not converge [although X) Ps(y) does converge]. 

To circumvent this difficulty we shall make use of the 
similarities which exist between (9) and the partition 
function. That is, Eq. (9) and the master equation may 
be viewed as a time-dependent virial expansion in which 
(N/V)~%(y) plays the role of an (H-l)th virial 
coefficient [(^+1)-particle irreducible cluster integral]. 
Like the equilibrium cluster integrals, however, p8(y) 
diverges for a Coulomb interaction potential, 

Vki=*/Rki 

because Vki approaches zero very slowly at large Rkh 
This means that (9), like the equilibrium virial expan
sion, is not directly applicable to Coulomb interactions 
in its present form and must be rearranged to yield a 
convergent result. In equilibrium theory this is ac
complished by first expanding each cluster integral as a 
power series in the parameter e2. The term which is of 
lowest order in e2 in such an expansion of a cluster 
integral is called a ring integral, and the sum of all 
possible ring integrals is found to converge to the 

where the binary indices «i, a2, • • -a8+i each denote some 
pair of particle indices from among particles ii, i2, • • • is+i, 
R« denotes the relative vector distance between the pair 
of particles a, and 

h'"is+l 

E 
{ai'-'Cts+l} 

denotes the sum of each of the binary indices ai, • • -as+i 

6 If 4>(t) satisfies the product condition 
iV 

[>(f l=Il0i(Py;*)J 

then, from (9), the kinetic equation for <fo(Pi,/) to all orders in the 
density and for all times / is given by 

d±dTt= k WWJlty J***'' -<*PH-I0.(1, 2- • -s+l;y) 

X UMVr,t-y) 
7 = 1 

providing /3S converges. 

Debye-Huckel approximation. These ring integrals ac
count for long-range correlations and lead to the 
phenomena of shielding [corrections from the remainder 
of the expansion can be obtained by various methods], 

The same procedure can be applied to (9). We can 
extract time-dependent ring integrals of (s+1) particles 
from the expansion of the time-dependent cluster 
integral p8(y). The sum of all such time-dependent ring 
integrals provides long-range shielding of the interaction 
(Balescu-Lenard, Fokker-Planck equation). The re
mainder of the time-dependent clusters (clusters minus 
rings) yield corrections which correspond to close 
collisions. 

These time-dependent ring integrals, analogous to 
those in equilibrium theory, are the first nonvanishing 
terms in the expansion of the time-dependent clusters in 
powers of the coupling constant e2. That is, if we set 
Vki=e2/Rki so that, in the definition of (38(y), 

i * i = * — — • ( — - ) , 
dRki \d?k d?i/ 

then the expansion of f3s(y) in powers of e2 yields the 
ring integrals R8(y) plus terms which are of higher order 
in e2. That is, we define R8(y) by 

fd?2- • • d?NRs(y)^e2s+2 ljme-<2s+2> (dPr • •dPjrftGO 

and find, by expanding the expression for fi8(y) (Ref. I), 

over all permissable pairs of particle indices from among 
particles ii, • • • i8+i. [Each term in this sum is such that 
when a Mayer-type diagram (as described in I) is 
drawn, by joining the pair indices together with lines, 
there results a topological ring.] This sum includes, for 
example, the ring term in which ai=12, a2=23, 
• ' -a8 = s(s+l), a s+i= 1(H-1). 

The sum in (10) for Rs(y) can be identified as the 
sum of all (s+1)-particle ring integrals which can be 
formed from the N particles of the system. These ring 
integrals are, aside from notation, the same as Balescu's 
ring terms. 

The order of magnitude of the remaining terms in the 
expansion of fd¥r • -dl?$8{y) in powers of e2 is equal to 
0(e2s+1). That is 

(d¥r • -d?Np,(y)= (dVr • -d?NRs{y) 

+0(e2s+i). (10b) 

/

/• ^l"^^s+l r pV pV 

d?r--d?NRs(y)= dP2---d¥N £ £ / «JR<lV • -dRili>+1 / dty • • dts+1 

J ii<*-*<ia+l {oti'-as+i} J Jo J t8 

XiL^e^-^^iL^ • 'e^ts+1-ts)LHLas+1 = 0(e2s+2), (10a) 
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[There are other terms in the expansion of ps(y) which 
are of the same or lower order in e2 than Rs(y)* These 
terms vanish,7 however, when they are integrated over 
all momenta but one and, consequently, will not appear 
in the kinetic equation.] 

Let us now write fis(y) in the form 

and substitute this form into (9) to obtain 

a*i(Pi) 

dt 
-= fdPr-dPyf dy{R"{y) 

+ Y,[flJ,(y)-Rs"{y)-]}<i>{t-y)i (11) 

where primes denote differentiation with respect to y9 

and 

R(y)^ZRs(y) 
8=1 

is the sum of all ring integrals. 
We thus see, in (11), that the ring integrals have been 

extracted and separated from the cluster integrals. The 
ring sum R(y) accounts for distant Coulomb collisions 
(long-range correlations) and the term [fi8(y)—Rs(y)l 
provides a correction due to close (s+1) -particle 
collisions.8 Equation (11) then explicitly divides the 
exact equation for the evolution of #iPi into a weak 
but highly correlated collision part, R(y), plus strong 
(s+1)-particle collision parts, [(&(;y)—R8(y)l* (This 
equation is of great interest for plasmas, and we shall 
find that it directly leads to a convergent kinetic 
equation.) 

The ring term has already been evaluated by Balescu 
in the asymptotic limit of large / under the condition 
that 4>{t) satisfies the product condition 

c*(o=n*iCPy)]. 

7 For example, consider the four-particle term 

(dRl2 fdRzt fV dh V dh fV dt&Li&WrtOLoiLrfWr-VLojL^ 

This is a term in the expansion of fiz{y) that is of lower order in e2 

than the four-particle ring term. The integral of this term over P3 
and P4 becomes 

fdR12 [dRu fV dh [V dh V dhiLufi^r-'DLoi 
J J Jo Jti Jt2 

X [dPdPtLitfWr-VLtiLiri, 

since y P 3 and y T 4 commute with the left side of this term. But 

so that the integral of this term over P3 and P4 yields only surface 
integrals which vanish providing cf> vanishes at P%, P±— °° • 

8Ps(y) corresponds to all possible (s+1)-particle collisions— 
weak and strong. The ring term Rs(y) corresponds to weak Cs-f-1)-
particle collisions so that the difference, Ci88(y)— Rt(y)2» corre
sponds to strong collisions. 

We shall merely quote Balescu's result later on, and 
shall henceforth consider the ring term as known. 

IV. CONVERGENT EQUATION TO LOWEST 
ORDER IN THE DENSITY 

Equation (11) is exact to all orders. We wish to obtain 
from it a convergent equation for fa which is exact to 
lowest order in the density—in the limit of large /. 

The ring term R(y), as previously mentioned, diverges 
at zero impact parameter. This implies that the ring 
term does not adequately account for close collisions. 
To remove, or cancel, this divergence we must include 
the close collision term, £ • D**(y)—-^60]> in the 
kinetic equation. We need not, however, include all the 
close collision terms. This is because 

/ 
dPr • •dPN[ps"(y)-Rs"(y)y>=0(tN/VJ), 

so that to lowest order in the density we need only 
include the binary collision term [fii(y)—Ri(y)~]- This 
term accounts for close two-particle collisions. The 
remaining close collision terms (s^2) are of higher 
order in the density and correspond to close collisions 
between three or more particles. Hence, to lowest order 
in the density or, equivalently, neglecting close collisions 
between three or more particles, Eq. (11) becomes: 

6\£i(Pi) 

dt 
= fd¥r-d?Nf dy{R/f(y) 

+pi"(y)-Ri"(y)}<l>(.t-y). (12) 

Equation (12) is exact for all t to lowest order in the 
density and, it will be noted, has a non-Markofhan 
memory which is significant for small t and for high-
frequency phenomena. This memory is interesting in 
itself and shall be the subject of future investigations. 
For our present purpose, however, we shall confine our 
discussion to the behavior of (12) in the asymptotic limit 
of long times (Markoffian limit). In this limit we have 

Jo 
dy{R"(y)+fi,"(y)-Ri"(y)H(t-y) 

i 
Jo 

dy{R"{y)+^f{y)~R^f{y))<t>{t) 

= { ^ ( ^ ) + / 3 i / ( ^ ) ~ ^ / ( ^ ) } « W (13) 

since, as is shown in I (Appendix D), &(0) = 0 for all s. 
The asymptotic time limit in (13) has been shown to be 
exact to lowest order in the density (see I, Sec. IIIB). 

Inserting (13) into (12) and assuming that <t>(t) 
satisfies the product condition we have 

d*i(Pi) 

dt • / • 

<ftV • •<ff«tR'(oo)+181'(co)-.R1'(c0)} 

X n * i ( P y ) , (14) 
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which, in the limit of large t, is still exact to lowest binary collisions. This is proven in Appendix A where 
order in the density providing <f)(t) satisfies the product it is found [Eq. (A8)] that 
condition. 

As the final step in the derivation of a kinetic equa
tion we must evaluate the momentum integrations in 
(14) for all three terms: the ring sum JR'(QO) the two-
particle cluster Pi (oo) 9 and the two-particle ring i?/ (oo). 

This is a relatively easy task. The ring sum has 
already been evaluated in Ref. 3 and is given there by9 

(except for a factor of 8II3). 

/ 
dFr--d?Nl31'(«=m<t>i(ri) 

-of dP2nr1Pia 

[dYr--d?NR'(*m<l>1(¥j) 

X f w ^ i t P / ^ i ^ ' J - ^ l P ^ i l P . ) ) , (17) 

where we have defined R(l) by 

d 
R(l) 

V dPi/ 

x-
8(I-gu) 

Xl 

Here ikl=nrl(Pk-ri)9 C^N/V and 

where b and 6 are the impact parameter and azimuthal 
__ 0 4 r f , p f 7|o/ix / ^N angle for a collision between particles 1 and 2, and 
-Le LJ d?%J dlHW , (15J p i 2 ^ P i _ p 2 > T h e a s y m p t o t i c momenta Px ' and P2 ' are 

the momenta of 1 and 2 after they have completed a 
collision with each other (completed over an infinite 
time interval) and are explicitly given, for a Coulomb 
potential, in Eq. (All) as functions of b and 0 (this 
equation for P / and P2 ' is simply the expression for 
Rutherford scattering). 

Equation (17) is simply the Boltzmann collision inte
gral for a Coulomb interaction potential. This integral 
diverges logarithmically at large b. We shall find, how
ever, that this divergence is exactly cancelled by the 
Ri(<*>) term in (14). 

In order to examine the cancellation of the divergent 
terms in (14) it will be convenient to transform the 
integration over b and 0 in (17) into an integration over 
the same three-dimensional vector 1 as in (15). This is 
done in Appendix B where it is found, (B4) and (B5), 
that (17) becomes 

\l2+4wie2C /^P35_(l'gi3)l- (a*i(P8)/flP8) 

d d (±-L) *i(Pi)*i(P»). (16) 

It will be noted that the 1 integration in (15) diverges f 
logarithmically at large I (large I corresponds to small / *"V • •^Pi\r/5i/(oo)]J[ 0i(P,-) 
impact parameter). ' 

The two-particle cluster integral, ft'(<*>), in (14) is 
quite familiar in nonequilibrium statistical mechanics. 
It leads directly to the Boltzmann collision integral for where Bi(l) is defined by 

2e*cfd?2 /• dlBA), (18) 

B1(l)^2-%-2e-4P12
25(l.g12)/-4{^i(PiO*i(P2,)-0i(Pi)^i(P2)} 

m2eH2 i r mP12h
2 

-2-%-2^4P12
25(l-g12)/-4 / r w W i r 

* i ( P i + P12-
\ Ltn2eH2+P12*J L 

X * 

m>eH2+P12* 

\ LmW+P 1 2
4 J L w W + P 1 2

4 J / J 

We see, from (18) and (19), that the logarithmic 
divergence occurs at small 7. This is because I corre
sponds to the reciprocal of b (Appendix B). 

Thus far we have considered the i£'(°°) and /3i'(°°) 
terms in (14). There only remains the two-particle ring 

9The asymptotic ring sum R'(°o) in Eq. (14) is-
notation—equal to Balescu's ring sum. 

-aside from 

integral, Ri(°o), which is easily evaluated from either 
#'(oo) or 0i'(oo). That is, we see from (10) that Ri(oo) 
is simply the first term in the expansion of /V( °°) about 
e2. In addition, we see from (12) that Ri(*>) is also the 
first term in the expansion of JR'(oo) about e2. Conse
quently, we may obtain Ri(<x>) from either R'(<x>) or 
/V(°°). It is more convenient to obtain Ri(°°) from 
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R'(«>). Thus, from (10B), (12), and (15) we find that may substitute (10B) into (18) to obtain 

/ 
<*PS-"<*PtfUi'(oo)II*i(Py) 

= e* lim<r4 / d?2• • • d¥NR'(oo )J{ ^ (p,) 

= 2e*C 

i 
'H <ARia), (20) 

where 

d 8(1-g12) / d d \ 

aPi /4 VaPi aP2/ 

Substituting (15), (18), and (20) into (14) we finally 
obtain the desired kinetic equation: 

a*i(Pi) 

dt 
= 2^0 fd¥2f. <a[Ra)+B,a)-Ria)], (22) 

where R(l) is the ring sum defined by (16), Bi(l) is the 
Boltzmann collision term (for a Coulomb potential) 
defined by (19), and Ri(l) is the two-particle ring term 
defined by (21). 

Equation (22) is a kinetic equation for a plasma in 
which binary collisions have been rigorously accounted 
for. It is exact to first order in the density in the limit 
of large t providing <j>(t) satisfies the product condition. 
We must now prove that it converges. 

V. CONVERGENCE OF THE KINETIC EQUATION 

We wish to show that despite the fact that each of the 
three terms in (22) [R(l),Bi(l),Ri(l)] diverge the 
sum of all three terms converge. Thus, we see from (16), 
(19), and (21) that ydlR(l) diverges logarithmically at 
large Z, /WlBi(l) diverges logarithmically at small /, and 
y^lRi(l) diverges logarithmically at both small / and 
large /. 

But it is easily seen from (16) and (21) that the large / 
divergencies due to R(l) and — Ri(l) cancel each other 
out exactly. 

There only remains the divergence of (22) due to 
Bi(l) and — Ri(l) at small /. To understand how these 
divergencies at small / cancel each other out we must 
expand Bi(l) about 1=0. It is not necessary, however, to 
go through all the details of such an expansion. That is, 
we see from the expression for Bi(l) in (19) that the 
term t>i(PiO*i(P2')-0i(Pi)*i(P2)], which must be 
expanded in Bi(l), contains e2 and 1 in the combination 
e2l An expansion of [0i(Pi /)0i(P2

,)-0i(Pi)0i(Pi)] 
about small e2 is, hence, the same as its expansion about 
small /. But, the expansion of Pi(y) about small e2 and, 
hence, about small / is given by (10B). Consequently, we 

2e*C dP2f dlB^l) 

= / d?r • •^P^i ,(^)Cl+O(e20]II*i. (23) 
• / • 

Substituting (20) into (23) we then have 

2e*C fd?2fdlBl(l) 

= 2e*C fd?2 /"cARiflCl+OC^O]. (24) 

[The reader can verify that (24) is correct by expanding 
Bi(l) about small / and comparing with Ri(l).] 

Substituting (24) into (22) we see that the singularity 
of yd(l)Bi(l) is exactly cancelled by the singularity of 
fdlRi(l) at small /. 

We have thus proven that the singularities of the 
kinetic equation, Eq. (22), cancel each other out leaving 
a convergent result. The distinctive feature of this 
convergent kinetic equation is that no cutoff or screened 
potential is required to make it converge. It only in
volves the Coulomb potential. 

VI. SUMMARY AND DISCUSSION 

A convergent kinetic equation, Eq. (22), has been 
derived for a homogeneous plasma without introducing 
cutoff or screened potentials. This equation was rigor
ously derived from the cluster formulation of the 
generalized Master equation by retaining terms which 
correspond to close binary collisions [J3i( 00)—Ri( 00)] 
in addition to the familiar terms which correspond to 
long-range correlations [ring sum, '-R(°°)]. Neglected, 
were terms which correspond to close collisions between 
three or more particles, 

s=2 
•R.(y)l-

Such terms are of second or higher order in the density. 
The kinetic equation, in the limit of long time, is thus 
exact to first order in the density although it contains 
terms to all orders in the density from the ring sumR(l). 
The only assumption made was the product condition. 
Further (density) corrections can be obtained by in
cluding the terms for close collisions between three or 
more particles. 

Equation (22) will lead to different values of transport 
coefficients than the Lenard-Balescu equation when the 
latter is appropriately cut off at large /. The order of 
magnitude of this difference will, approximately, vary 
with the logarithm of the arbitrary cutoff in the Lenard-
Balescu equation. 
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As a final remark we note that the kinetic equation 
has been derived from the generalized master equation 
in the asymptotic limit of large time t. This limit is not 
necessary, however. The master equation is valid for all 
time so that one can derive from it a kinetic equation 
which is also valid for all time. To accomplish this one 
must simply evaluate the ring sum, Rf(y), and the 
binary collision integral Pi(y) as a function of the time 
y instead of in the limit of large y (such a calculation 
may not be difficult for Coulomb interactions since then 
the particle trajectories are simple and well-known 
functions of the time). This would lead to a non-
Markoffian kinetic equation of the Volterra type with 
which one may study the frequency dependence of 

But e~iv{L*+Ln) is the formal Green function solution of 
Liouville's equation for a two-body system; i.e., if 
/PMOjIMO] Is a n y function of the momenta of par
ticles 1 and 2 at time t, Pi(/) and P2(0> then 

/[PxC-O, ¥2(-t)-]=e~^^^f[Fly?2] (A3) 

is the solution of 

d / [ P i ( - 0 , P * ( - O ] 
— =-i(L0+L12)fl¥1(-t\ P 2 ( - / ) ] , 

dt 
where Pi(—0 and P2(—0 are the momenta that 1 and 2 
(considered isolated) must have had at time {—t) in 
order that they will have momenta and relative position 
Pi, P2, and R12 at time zero. That is, Pi(—0 and 
P2(—0 are solutions of the two-body problem and are 
functions of Pi, P2, and Ri2. 

Substituting (A3) into (A2) we have, with N/V^C} 

I(y) = cfd¥2~ fdR12{<i>iU?i(-y)l 

X<£i[P2(-:y)]-<MPi)4>i(P2)}. (A4) 

transport coefficients. This equation would, of course, 
reduce to(22) when / is large. 

Note added in proof. It has come to my attention that 
Dr. D. E. Bladwin is aware that a convergent equation 
need not have a cutoff and has published such a result 
in a technical report. 

APPENDIX A 

We shall derive here the result expressed by (17). For 
convenience we let I(y) denote 

so that, with (6) and (7), 

The integrand of (A4) is nonzero only if Ri2 is such 
that 1 and 2 are aimed to collide within time y in which 
event 

P i ( - y ) * P i , 

We may, therefore, restrict the integration over R12 in 
(A4) to that region, Qu(y), which leads to a collision 
between 1 and 2 as follows: 

I iflMfcCPxC-jOMP.C-jOII-fcCPitoiCPO} 
J all space 

= f <«? I2{<*>I [P I ( -X>;MP 2 ( - )0 ] 

-*i(Pi)*i(P,)>, (A5) 

where Qu(y) is a collision cylinder whose length is 
nr^-Piiy and whose cross section is the total scattering 
cross section. If y is large enough then the momenta 

since 

But 

so that (Al) becomes 

- / 
j (y)s / d?2- • -d?N E v-1 /"(»».—[tf-*»(w-^.)_i] n *i 

N 

n 
N 

Z 
fc=2 

d 

*<« J dy 

d 

dy 
= L V-1 fd?k fdRn—le-^^^ -1] / d¥2• • • d?N II *i, 

J(Pk) 

N n 

/ , 
dFr • -dVN II *i » &(Pi,P*) = *i(Pi)*i(P*) 

(P») 3=1 

N r r d 
Hy)= £ v-1 / d?k / rfRi*—Ctf-

<»(£^£i*)-i>1(p1)^1(p4) 
*=2 J J dy 

= (NmJdFJd^r-le-'y^+^-l^itfM^N. 

(Al) 

(A2) 
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Pi(—y) and P2(—y) will approach the asymptotic 
momenta P i ' and P2', and (A5) may be integrated to 
yield10 

which we substitute into (A9) to obtain 

/W>!.A 2-1-1 
-Pid l + ( -P12-kk= 

W-1P1 2y/"j<f^{^1(P1 ' )^ l(P2 ' ) -0l(Pl)^l(P2)} 

+smaller terms in y, 

where 

T \2we2/J 

Px'aPi-Pu-kk, 
P2 '^p2+Pl2kk, 

(A6) 

(A7) 

r/bPii +F"l( 
\2me 

r \2m& 

/WVXT1 

=Pi , -Pi=P 2 -P» 

and k is the unit vector in the perihelion direction for a 
collision with impact parameter b and azimuthal angle 6. 
In other words, P i ' and F2 are the asymptotic momenta 
that 1 and 2 will have after completing their interaction 
with each other given that they were, initially, infinitely 
separated and approaching each other with impact 
parameter b and azimuthal angle 6. 

Substituting (A6) into (A4) and taking the limit of 
infinite y we have, exactly, 

J(oo) = C / d?2m-lPn / MM9{*i(Pi ,)*i(P« /) :[dP2m-lPn( 

\2me2 * 

X{xcosH-ysin0} 

.2-1:2'. (Al l ) 

Equation (Al l ) serves to express P / and P 2 ' in terms of 
b and 0. 

APPENDIX B 

We wish to transform the integration over impact 
parameter b and azimuthal angle 6 in (17) into an 
integration over the three-dimentional vector 1 as in 
(15). The integration over b and 6 is a two-dimensional 
integral. That is, it is an integral over the plane perpen
dicular to the P12 direction. We may transform this two-
dimensional integral into a three-dimensional integral 
by multiplying the integrand with a delta function. 
Thus, if we define the new variable of integration 1 

l=l**+lyy+l* (Bl) 
by 

l=b~\ 

-*x(Pi)*i(Pi)>. (A8) 

Equation (A8) is exact because the "smaller terms in y" 
vanish in the limit where y is infinite. This equation is 
simply the Boltzmann collision integral for Coulomb 
scattering (Rutherford scattering). [This integral actu
ally diverges logarithmically at large b. This divergence, 
however, is cancelled by another term of the complete 
kinetic equation.] 

Asymptotic M o m e n t a P / and / Y 

The asymptotic momenta P i ' and P2; in the Boltzmann 
collision integral, (A8), can be readily expressed in 
terms of b and 6 as follows. We consider a coordinate 
system in which the z axis lies along P12, and we let x and 
y denote unit vectors perpendicular to each other and 
to the z axis. If we also let a denote the scattering angle 
then we have 

P i ' - P i = P a - P * ' = - P 1 2 - k k = P 1 2 sin(ia)k 

=P i2 sin(|a){ (k-z)z+ (k-x)x+ (k-y)y} 

= —P12 sin2(fa)z+sin(|a:) cos(|a) 

X{xcos0+ysin0}. (A9) 

^=& _ 1 cos0, 

ly=b~~1 sind, 

(B2) 

J . = 0 , 

where z is a unit vector in the direction of Pi2) then 

IbdbdO^ fdljlj-^ fa 

C 

bdbdd^ I dlJlJ-*= I dljlydlzl-*8(h) 

^m-1P12fdll-i8(l-gli). (B3) 

Substituting (B3) into the right side of (17) we have 

•[d?Jdlm->Pn*S(bg12) 

X/-4{^i(P1 ' )*1(P2')-^i(Pi)*i(P2)} • (B4) 

(All) and (All) into Substituting (B2) into 
^1(P1 ' )01(P2 ' ) , we have 

{*i(Pi ')0i(P»')-*i(Pi)*i(Pi)} 
m2eH2 

-K p.+r-

X0 
For Coulomb scattering sin (fa) is simply given by 

sin( |a) = 

M 
L m W + P i 2 4 

m W + P i 2
4 

M 
iPi2+r 

wW+P12
4J 

mP12
ze2 1 

/WV\2T1 / 2 

LwW+P12
4J / 

#i (P i )* i (P*) l . (B5) 

WvJ (A10) 

" J. Weinstock, Phys. Rev. 132, 470 (1963). 

Combining (B4) and (B5) we have the right side of (17) 
given explicitly in terms of 1 instead of in terms of b 
a n d $ . 


